Roles for basal and stimulated p21(Cip-1/WAF1/MDA6) expression and mitogen-activated protein kinase signaling in radiation-induced cell cycle checkpoint control in carcinoma cells.

نویسندگان

  • J S Park
  • S Carter
  • D B Reardon
  • R Schmidt-Ullrich
  • P Dent
  • P B Fisher
چکیده

We investigated the role of the cdk inhibitor protein p21(Cip-1/WAF1/MDA6) (p21) in the ability of MAPK pathway inhibition to enhance radiation-induced apoptosis in A431 squamous carcinoma cells. In carcinoma cells, ionizing radiation (2 Gy) caused both primary (0-10 min) and secondary (90-240 min) activations of the MAPK pathway. Radiation induced p21 protein expression in A431 cells within 6 h via secondary activation of the MAPK pathway. Within 6 h, radiation weakly enhanced the proportion of cells in G(1) that were p21 and MAPK dependent, whereas the elevation of cells present in G(2)/M at this time was independent of either p21 expression or MAPK inhibition. Inhibition of the MAPK pathway increased the proportion of irradiated cells in G(2)/M phase 24-48 h after irradiation and enhanced radiation-induced apoptosis. This correlated with elevated Cdc2 tyrosine 15 phosphorylation, decreased Cdc2 activity, and decreased Cdc25C protein levels. Caffeine treatment or removal of MEK1/2 inhibitors from cells 6 h after irradiation reduced the proportion of cells present in G(2)/M phase at 24 h and abolished the ability of MAPK inhibition to potentiate radiation-induced apoptosis. These data argue that MAPK signaling plays an important role in the progression/release of cells through G(2)/M phase after radiation exposure and that an impairment of this progression/release enhances radiation-induced apoptosis. Surprisingly, the ability of irradiation/MAPK inhibition to increase the proportion of cells in G(2)/M at 24 h was found to be dependent on basal p21 expression. Transient inhibition of basal p21 expression increased the control level of apoptosis as well as the abilities of both radiation and MEK1/2 inhibitors to cause apoptosis. In addition, loss of basal p21 expression significantly reduced the capacity of MAPK inhibition to potentiate radiation-induced apoptosis. Collectively, our data argue that MAPK signaling and p21 can regulate cell cycle checkpoint control in carcinoma cells at the G(1)/S transition shortly after exposure to radiation. In contrast, inhibition of MAPK increases the proportion of irradiated cells in G(2)/M, and basal expression of p21 is required to maintain this effect. Our data suggest that basal and radiation-stimulated p21 may play different roles in regulating cell cycle progression that affect cell survival after radiation exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of human papilloma virus E7 protein causes apoptosis and inhibits DNA synthesis in primary hepatocytes via increased expression of p21(Cip-1/WAF1/MDA6).

The impact of human papilloma virus (HPV16) E7 proteins and retinoblastoma (RB) antisense oligonucleotides upon mitogen-activated protein kinase (MAPK)-mediated inhibition of DNA synthesis via p21(Cip-1/WAF1/MDA6) (p21) was determined in primary hepatocytes. Prolonged activation of the MAPK pathway in p21(+/+) or p21(-/-) hepatocytes caused a large decrease and increase, respectively, in DNA sy...

متن کامل

Lack of a p21waf1/cip-Dependent G1/S Checkpoint in Neural Stem and Progenitor Cells After DNA Damage In Vivo

The cyclin-dependent kinase inhibitor p21(waf1/cip) mediates the p53-dependent G1/S checkpoint, which is generally considered to be a critical requirement to maintain genomic stability after DNA damage. We used staggered 5-ethynyl-2'deoxyuridine/5-bromo-2'-deoxyuridine double-labeling in vivo to investigate the cell cycle progression and the role of p21(waf1/cip) in the DNA damage response of n...

متن کامل

A role for both Ets and C/EBP transcription factors and mRNA stabilization in the MAPK-dependent increase in p21 (Cip-1/WAF1/mda6) protein levels in primary hepatocytes.

In primary hepatocytes and HepG2 hepatoma cells, prolonged activation of the p42/44 mitogen-activated protein kinase (MAPK) pathway is associated with a reduction in DNA synthesis, mediated by increased expression of the cyclin-dependent kinase inhibitor protein p21 (Cip-1/WAF1/mda6) (p21). This study was performed to evaluate the contribution of transcriptional and post-transcriptional regulat...

متن کامل

Lovastatin causes FaDu hypopharyngeal carcinoma cell death via AMPK-p63-survivin signaling cascade.

Statins are used widely to lower serum cholesterol and the incidence of cardiovascular diseases. Growing evidence shows that statins also exhibit beneficial effects against cancers. In this study, we investigated the molecular mechanisms involved in lovastatin-induced cell death in Fadu hypopharyngeal carcinoma cells. Lovastatin caused cell cycle arrest and apoptosis in FaDu cells. Lovastatin i...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 10 12  شماره 

صفحات  -

تاریخ انتشار 1999